Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Study on Overcoming Unavailable Backward Driving and a New Fail-Safe Strategy for R-Gearless (P)HEV System

2024-04-09
2024-01-2170
Recently, as part of the effort to enhance fuel efficiency and reduce costs for eco-friendly vehicles, the R-gearless system has been implemented in the TMED (P)HEV system. Due to the removal of the reverse gear, a distinct backward driving method needs to be developed, allowing the Electronic Motor (e-Motor) system to facilitate backward movement in the TMED (P)HEV system. However, the capability of backward driving with the e-Motor is limited because of partial failure in the high-voltage system of an R-gearless system. Thus, we demonstrate that it is possible to improve backward driving problems by applying a new fail-safe strategy. In the event of a high-voltage battery system failure, backward driving can be achieved using the e-Motor with constant voltage control by the Hybrid Starter Generator (HSG), as proposed in this study.
Technical Paper

C-STARTM Protection

2024-04-09
2024-01-2197
Electrification is the future of the automotive industry and with the rapid growth of Battery Electric Vehicle (BEV) market, battery protection becomes more and more crucial. Side pole impact is one of the most challenging safety load cases. Rocker assembly, as the first line of defense, plays a significant role during the event. This paper proposes Cleveland-Cliffs Steel Tube as Reinforcement (C-STARTM) protection as an application for rocker reinforcement. For a component level assessment, three-point bending is used as a testing method to replicate pole impact. The performance is compared with aluminum baseline with respect to peak force and energy absorption. Test and CAE simulations have been performed and a well calibrated CAE model is utilized to predict the robustness of various steel designs using different grades, gauges and geometries.
Technical Paper

Analyzing the Expense: Cost Modeling for State-of-the-Art Electric Vehicle Battery Packs

2024-04-09
2024-01-2202
The Battery Performance and Cost Model (BatPaC), developed by Argonne National Laboratory, is a versatile tool designed for lithium-ion battery (LIB) pack engineering. It accommodates user-defined specifications, generating detailed bill-of-materials calculations and insights into cell dimensions and pack characteristics. Pre-loaded with default data sets, BatPaC aids in estimating production costs for battery packs produced at scale (5 to 50 GWh annually). Acknowledging inherent uncertainties in parameters, the tool remains accessible and valuable for designers and engineers. BatPaC plays a crucial role in National Highway Transportation Traffic Safety Administration (NHTSA) regulatory assessments, providing estimated battery pack manufacturing costs and weight metrics for electric vehicles. Integrated with Argonne's Autonomie simulations, BatPaC streamlines large-scale processes, replacing traditional models with lookup tables.
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

Virtual Simulation and Design Optimization of Bi-Functional Projector Headlamp for Nighttime Visibility of Overhead Signs

2024-04-09
2024-01-2231
For safe driving function, signs must be visible. Sign visibility is function of its luminance intensity. During day, due to ambient light conditions sign luminance is not a major concern. But during night, due to absence of sun light sign board retro-reflectivity plays a crucial role in sign visibility. The vehicle headlamp color, beam pattern, lamp installation position, the relative seating position of driver and moon light conditions are important factors. Virtual simulation approach is used for analyzing the sign board visibility. Among various factors for example the headlamp installation position from ground, distance between two lamps and eye position of driver are considered for analyzing the sign board visibility in this paper. Many automotive organizations have widely varying requirements and established testing guidelines to ensure visibility of signs in head lamp physical testing but there are no guidelines during design stage for headlamp for sign visibility.
Technical Paper

Parameters Affecting Torsional Stiffness of Vehicle Doors

2024-04-09
2024-01-2226
Side doors are pivotal components of any vehicle, not only for their aesthetic and safety aspects but also due to their direct interaction with customers. Therefore, ensuring good structural performance of side doors is crucial, especially under various loading conditions during vehicle use. Among the vital performance criteria for door design, torsional stiffness plays an important role in ensuring an adequate life cycle of door. This paper focuses on investigating the impact of several door structural parameters on the torsional stiffness of side doors. These parameters include the positioning of the latch, the number of door side hinge mounting points on doors (single or double bolt), and the design of door inner panel with or without Tailor Welded Blank (TWB) construction.
Technical Paper

Integrated Bracket for Rain Light Sensor/ADAS/Auto-Dimming IRVM with provision of mounting for Aesthetic Cover

2024-04-09
2024-01-2224
Plastic design is one of the upcoming fields of interest when it comes to weight optimization, sustainability, strength, and overall aesthetics of an automobile. What is often ignored is the amount of flexibility a plastic designer has, of integrating and packaging various components of an automobile into a single part and still make it an integral part of its complex aesthetics. This paper highlights upon one such part that is being developed: An integrated bracket which packages ADAS camera, Rain Light Sensor, and an Auto-dimming IRVM. Apart from packaging the mentioned components, this bracket also has mounting provisions for an aesthetic cover (also referred to as beauty cover). The objective of this paper is to highlight the importance of integration of several parts into a single part for packaging multiple components that need to be placed in a close proximity with each other.
Technical Paper

Effect of Side Door Check Arm Profile on Side Door Closing Velocity

2024-04-09
2024-01-2221
The side-door operation of vehicle is vital to the customer, as it reflects the overall build quality of the vehicle. The side door check arm is one of the primary components that determine the operating characteristics of a vehicle door. The profile of the check arm has a significant impact on the closing effort of side doors. In this study, the check arm profiles are analyzed virtually in relation to the side door's closing velocity. A virtual door model was developed in ADAMS to simulate the side door closing and opening. The study involves a check arm that guides the ball spring mechanism housing unit over the guide profile. Typically, a check-arm guide profile has two or three indents at a specific location which serves to maintain the door open in those positions. When a door enters an indent, the user must exert an effort to traverse it. Furthermore, the slope profile of the check arm defines the self-closing assist offered from the initial indent to the latching position.
Technical Paper

Elucidation of Deteriorating Oil Consumption Mechanism Due to Piston Top Ring Groove Wear

2024-04-09
2024-01-2269
The piston and piston ring are used in a severe contact environment in engine durability tests, which causes severe wear to the piston ring groove, leading to significant development costs for countermeasures. Conventionally, in order to ensure functional feasibility through wear on the piston top ring groove (hereinafter “ring groove”), only functional evaluations through actual engine durability testing were performed, and there was an issue in determining the limit value for the actual amount of wear itself. Because of this, the mechanism that may cause wear on the ring groove was clarified through past research, but this resulted in judgment criteria with some leeway from the perspective of functional assurance. To establish judgment criteria, it was necessary to understand both functional effect from ring groove wear and the mechanism behind it.
Technical Paper

Computational Modeling and Optimization of a Flapping Mechanism Based on the Scotch Yoke Principle

2024-04-09
2024-01-2264
The flight mechanisms of birds have long inspired efforts to develop bioinspired aerial vehicles. This study presents a computational framework to analyze a flapping mechanism's structural behavior and performance based on the Scotch yoke principle. A three-dimensional CAD model is developed and meshed for finite element analysis in ANSYS. Structural steel is chosen as the material. Static analysis is performed under simulated flapping loads to predict deformation, stresses, fatigue life, and failure points. Preliminary results identify regions of high-stress concentration requiring optimization. Topology optimization is conducted to determine an optimal material layout within defined constraints. Additional shape and compliance optimizations are employed. Comparison of initial and optimized designs significantly reduces maximum deformation and stresses throughout the structure. Fatigue life and safety factors are markedly improved.
Technical Paper

Vehicle Lightweighting Impacts on Energy Consumption Reduction Potential Across Advanced Vehicle Powertrains

2024-04-09
2024-01-2266
The National Highway Traffic Safety Administration (NHTSA) plays a crucial role in guiding the formulation of Corporate Average Fuel Economy (CAFE) standards, and at the forefront of this regulatory process stands Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy (DOE) research institution, has developed Autonomie—an advanced and comprehensive full-vehicle simulation tool that has solidified its status as an industry standard for evaluating vehicle performance, energy consumption, and the effectiveness of various technologies. Under the purview of an Inter-Agency Agreement (IAA), the DOE Argonne Site Office (ASO) and Argonne have assumed the responsibility of conducting full-vehicle simulations to support NHTSA's CAFE rulemaking initiatives. This paper introduces an innovative approach that hinges on a large-scale simulation process, encompassing standard regulatory driving cycles tailored to various vehicle classes and spanning diverse timeframes.
Technical Paper

Multi-Material and Multi-Objective Topology Optimization Considering Crashworthiness

2024-04-09
2024-01-2262
Recently, topology optimization (TO) has seen increased usage in the automotive industry as a numerical tool, greatly enhancing the accessibility and production-readiness of optimal, lightweight solutions. By natural extension of classic single material TO (SMTO), a wealth of research has been completed in multi-material TO (MMTO), enabling simultaneous determination of material selection and existence. MMTO is effective for linear static analyses, making use of structural responses that are continuously differentiable, giving itself to efficient gradient-based optimization engines. A structural response that is inherently nonlinear and transient, thus providing difficulty to the mainstay MMTO process, is that of crashworthiness. This paper presents a multi-objective MMTO framework considering crashworthiness using the equivalent static load (ESL) method. The ESL method uses a series of linear static sub-models to approximate the transient crashworthiness model.
Technical Paper

Efficient Fatigue Performance Dominated Optimization Method for Heavy-Duty Vehicle Suspension Brackets under Proving Ground Load

2024-04-09
2024-01-2256
Lightweight design is a key factor in general engineering design practice, however, it often conflicts with fatigue durability. This paper presents a way for improving the effectiveness of fatigue performance dominated optimization, demonstrated through a case study on suspension brackets for heavy-duty vehicles. This case study is based on random load data collected from fatigue durability tests in proving grounds, and fatigue failures of the heavy-duty vehicle suspension brackets were observed and recorded during the tests. Multi-objective fatigue optimization was introduced by employing multiaxial time-domain fatigue analysis under random loads combined with the non-dominated sorting genetic algorithm II with archives.
Technical Paper

Multi-Objective Optimization of Occupant Survival Space of a Medium-Duty Vehicle under Rollover Condition

2024-04-09
2024-01-2263
Due to the high center of gravity of medium-duty vehicles, rollover accidents can easily occur during high-speed cornering and lane changes. In order to prevent the deformation of the body structure, which would restrict the survival space and cause compression injuries to occupants, it is necessary to investigate methods for mitigating these incidents. This paper establishes a numerical model of right-side rollover for a commercial medium-duty vehicle in accordance with ECE R66 regulations, and the accuracy of the model is verified by experiment. According to the results, the material and size parameters of the key components of the right side pillar are selected as design variables. The response result matrix was constructed using the orthogonal design method for total mass, energy absorption, maximum collision acceleration, and minimum distance from the survival space.
Technical Paper

Optimization of Body Parts Specifications Using A.I Technology

2024-04-09
2024-01-2017
Optimizing the specifications of the parts that make up the vehicle is essential to develop a high performance and quality vehicle with price competitiveness. Optimizing parts specifications for quality and affordability means optimizing various factors such as engineering design specifications and manufacturing processes of parts. This optimization process must be carried out in the early stages of development to maximize its effectiveness. Therefore, in this paper, we studied the methodology of building a database for parts of already developed vehicles and optimizing them on a data basis. A methodology for collecting, standardizing, and analyzing data was studied to define information necessary for specification optimization. In addition, AI technology was used to derive optimization specifications based on the 3D shape of the parts. Through this study, body parts specification optimization system using AI technology was developed.
Technical Paper

A Manufacturing Performance Comparison of RSW and RFSSW Using a Digital Twin

2024-04-09
2024-01-2053
The design of lightweight vehicle structures has become a common method for automotive manufacturers to increase fuel efficiency and decrease carbon emission of their products. By using aluminum instead of steel, manufacturers can reduce the weight of a vehicle while still maintaining the required strength and stiffness. Currently, Resistance Spot Welding (RSW) is used extensively to join steel body panels but presents challenges when applied to aluminum. When compared to steel, RSW of aluminum requires frequent electrode cleaning, higher energy usage, and more controlled welding parameters, which has driven up the cost of manufacturing. Due to the increased cost associated with RSW of aluminum, Refill Friction Stir Spot Welding (RFSSW) is being considered as an alternative to RSW for joining aluminum body panels. RFSSW consumes less energy, requires less maintenance, and produces more consistent welding in aluminum as compared to RSW.
Technical Paper

Validation of a Two-Parameter Controlled Novel Tribometer for Analysing Durability of Piston Ring-Engine Cylinder Tribo-Pair

2024-04-09
2024-01-2067
The wear of the piston ring-cylinder liner system in gasoline engines is inevitable and significantly impacts fuel economy. Utilizing a custom-built linear reciprocating tribometer, this study assesses the wear resistance of newly developed engine cylinder coatings. The custom device offers a cost-effective means for tribological evaluation, optimizing coating process parameters with precise control over critical operational factors such as normal load and sliding frequency. Unlike conventional commercial tribometers, it ensures a more accurate simulation of the engine cylinder system. However, existing research lacks a comprehensive comparative analysis and procedure to establish precision limits for such modified devices. This study evaluates the custom tribometer's repeatability compared to a commercial wear-testing instrument, confirming its potential as a valuable tool for advanced wear testing on engine cylinder samples.
Technical Paper

Development of the New V6 Twin-Turbocharged Engine for Flagship SUV

2024-04-09
2024-01-2095
As part of Nissan’s strategy of electrification and the shift to smart technologies, our powertrain department has two main pillars: zero emissions and ICE Evolution. As a core unit of ICE Evolution, we have developed a brand new 3.5L V6 Twin turbocharged gasoline engine for Nissan’s next generation full-size flagship SUV to deliver luxury and toughness at the highest level. This brand-new engine will be applied to vehicles in all corners of the world and must have strong performance in every corner. More specifically, it has to meet the latest emissions and fuel efficiency regulations, have strong power performance beyond expectation, and provide reliable drivability on rough roads and deserts. To achieve these requirements, the new engine is incorporating many cutting-edge technologies.
Technical Paper

Evolution of Light-Duty Gasoline Compression Ignition (LD-GCI) for High Efficiency and US Tier3- Bin30 Emissions

2024-04-09
2024-01-2092
It is widely recognized that internal combustion engines (ICE) are needed for transport worldwide for years to come, however, demands on ICE fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach to achieve demanding efficiency and emissions targets. At Aramco Research Center-Detroit, an advanced, multi-cylinder GCI engine was designed and built using the latest combustion system, engine controls, and lean aftertreatment. The combustion system uses Aramco’s PPCI-diffusion process for ultra-low NOx and smoke. A P2 48V mild hybrid system was integrated on the engine for braking energy recovery and improved cold starts. For robust low-load operation, a 2-step valvetrain system was used for exhaust rebreathing. Test data showed that part-load fuel consumption was reduced 7 to 10 percent relative to a competitive 2.0L European diesel engine.
Technical Paper

A Comparative Study of Knock Formation in Gasoline and Methanol Combustion Using a Multiple Spark Ignition Approach: An Optical Investigation

2024-04-09
2024-01-2105
Engine knock is a major challenge that limits the achievement of higher engine efficiency by increasing the compression ratio of the engine. To address this issue, using a higher octane number fuel can be a potential solution to reduce or eliminate the propensity for knock and so obtain better engine performance. Methanol, a promising alternative fuel, can be produced from conventional and non-conventional energy resources, which can help reduce pollutant emissions. Methanol has a higher octane number than typically gasolines, which makes it a viable option for reducing knock intensity. This study compared the combustion characteristics of gasoline and methanol fuels in an optical spark-ignition engine using multiple spark plugs. The experiment was carried out on a single-cylinder four-stroke optical engine. The researchers used a customized metal liner with four circumferential spark plugs to generate multiple flame kernels inside the combustion chamber.
X